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The nature of the orientational relaxation process of the director n̂ to its equilibrium orientation n̂eq, in the
twisted nematic cell, under the influence of an external electric field, is investigated. The influence of the
electric, elastic, and viscous torques on the dynamics of the director is reflected in the relaxation of the director
n̂ to n̂eq, with different relaxation times. It is shown that the relaxation time, both for the cases of a strong and
weak anchoring, exhibits an anomalous increase with decreasing of an external electric field, whereas the
influence of the azimuthal anchoring energy, in the case of the twisted nematic cell is characterized by a weak
effect. It is also shown that these torques exerted on the director may excite the traveling wave spreading from
one edge of the cell to their second edge. Calculations of the relaxation processes in the vicinity of a nematic—
smectic-A �NA� phase transition temperature TNA, e.g., at a few tens of mK from TNA in the nematic phase,
shows that the director distortion in the gap between two plates is maintained to be constant across the sample
both in the case of a strong and weak anchoring.
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I. INTRODUCTION

Uniform textures of twisted nematics �TN� are produced
by orienting a drop of bulk material in between two conve-
niently treated plates, which define usually a fixed orienta-
tion for the boundary molecules. This is the so-called strong
anchoring orientation. Applying an electric field E parallel to
an uniformly oriented TN can distort the molecular orienta-
tion â with respect to director n̂, at a critical field Eth given
by �1�

Eth =
�

d
� K2

�0�a
, �1�

where d is the sample thickness, K2 is the twist elastic con-
stant, �0 is the absolute dielectric permittivity of free space,
�a=�� −�� is the dielectric anisotropy of the TN, �� and ��

are the dielectric constants parallel and perpendicular to the
director n̂, respectively. This form for the critical field is
based upon assumptions that the director remains strongly
anchored �in our case, homogeneously� at the two surfaces
and that alignment of the director n̂ is uniformly constant
across the sample for E�Eth. On the other hand, with in-
crease an external field E�Eth, the theoretical description of
dissipation processes in a TN confined at its end by fixed
plates which align the rodlike molecules along a preferred
in-plane direction �directed, for instance, parallel to the x
axis�, exhibit a number of regimes of relaxation. These re-
gimes, in which the director rotates in the plane parallel to
both glass plates, exert a torque directed to be normal to
these boundaries. They are, however, thermodynamically
metastable, because an external electric field is directed to be
parallel to restricted plates �parallel to the y axis�, and large
orientation fluctuation may occur which carry the system be-

tween metastable and stable states, relieving and enhancing
the twist. Thus, if a constant torque is maintained externally
at the end plates, twist reducing fluctuations may relax the
external torque which was balancing the torque applied to
the plates. In response, the system will twist, thus increasing
the internal torque until it again balances the applied
torque. Moreover, for narrow �or ultranarrow� TN cells
�d�2-3 �m� anchoring plays a major role and the effects of
surfaces on the relaxation process need to be examined es-
pecially at temperatures close to a nematic—smectic-A �NA�
second-order transition TNA, because it leads to introduction
of smectic positional molecular order in the boundary region
�2,3�. Existence of SmA structures induced by the surface in
nematic phase of twisted liquid crystals �LCs� infer a surface
induced smectic density wave decaying exponentially into
the liquidlike nematic bulk �4–6�. In turn, the growth of pre-
transitional SmA fluctuations are expected to give rise to a
novel torque on n̂, which alters the viscous torque. As a
result, the effect of fluctuations is reflected in a renormaliza-
tion of the viscous and some elastic coefficients.

So, the problem of predicting of the relaxation processes
in a twisted nematic cell is far from being trivial, and more
realistic theoretical treatments which can elucidate the role of
an external electric field, anchoring conditions and tempera-
ture are needed.

The outline of this article is as follows: a dynamic equa-
tion describing the reorientation of a director in the twisted
nematic cell and numerical calculation of the relaxation of
the director to its equilibrium orientation, for number of re-
gimes of relaxation, both in the vicinity of the second-order
nematic—smectic-A phase transition temperature and far
from it, are given in Sec. II. Conclusions are summarized in
Sec. III.

II. SURFACE REORIENTATION DYNAMICS OF
NEMATIC LIQUID CRYSTALS

Here we localize our attention on the azimuthal anchor-
ing, when the polar angle � is fixed, and the anchoring en-
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ergy is a function of the surface azimuthal angle � only. The
dynamic equation describing the reorientation of the director
distortion in the gap between two glass plates is maintained
by elastic, electric and viscous torques as

Tel + Telast + Tvis = 0. �2�

In the case of planar geometry n̂= (cos ��z� , sin ��z� ,0)
and absence of flow, the viscous, electric and elastic
torques takes the form Tvis=−�1n̂	 ��n̂ /�t�, Tel

=�0�an̂	E�n̂ ·E�, and Telast= n̂	ht, respectively. Here
ht=−K2�A� 	 n̂+�	 �An̂��, and A= n̂ · ��n̂� is the twist
component of the molecular field, �1 is the rotational viscos-
ity coefficient �RVC�, �a=�� −��, �� and �� are the dielectric
constants parallel and perpendicular to the director n̂, and �0
is the dielectric permittivity of free space. In the case of the
planar geometry, when n̂ always remaining in the plane of
the plates �x-y plane defined by the director n̂s on the
lower plate �x direction� and the electric field direction �y
direction�; k̂= î	 ĵ is directed to be normal to both glass
plates�, ��z� denotes the azimuthal angle, i.e., the angle be-

tween the direction of the unit vector î and the director n̂.
The torque due to electric field is given by Tel

= �E2 /2��0�a sin 2��t ,z�k̂, whereas the viscous torque takes

the form Tvis=�1�t��t ,z�k̂, where �t��t ,z�=���t ,z� /�t. The

torque due to elastic forces is Telast=K2�zz��t ,z�k̂, where
�zz��t ,z�=�2��t ,z� /�z2.

Taking this into account Eq. �2� can be written in a di-
mensionless form as

�
��
,z� = �zz��
,z� + � sin 2��
,z� , �3�

where 
=K2t /�1d2, �= ��2 /2��E /Eth�2, and z=z /d is the di-
mensionless direction through the cell thickness. Here Eth

= �� /d��K2 /�0�a is the Freedericksz threshold field in this
geometry. The partial differential Eq. �3� describing the dy-
namics of director in the twisted cell will later be solved
numerically, however the static equilibrium equation may be
found analytically by solving the time independent equation
for ��z�

�zz�eq�z� + � sin 2�eq�z� = 0. �4�

A. Case of strong anchoring

In the case of the strong anchoring the boundary condi-
tions are

��z�z=0 = 0, ��z�z=1 = 0, �5�

whereas the initial orientation of the director is disturbed
parallel to the external field E, with ��
=0,z�=� /2, and
then allowed to relax to its equilibrium value �eq�z�. The
solution �4� with the boundary conditions �5� is �7�

z = 2��
0

� d

�1 − sin2 �m sin2 
= 2�K��,sin �m�, 0 � z �

1

2
,

�6�

where K�� ,k�, k=sin �m is the elliptic integral of the first
kind having modulus k, �m=�� 1

2
�. The solution for

1
2 �z�1 is obtained from Eq. �6� by means of the simple
replacing z by 1−z. The relaxation of the director n̂ to its
equilibrium orientation, which is described by the angle
��
 ,z� from the initial condition ��
=0,z�=� /2 to �eq�z�,
and the planar director alignment on both surfaces �condi-
tions �5��, at different values of �= ��2 /2��E /Eth�2, have
been investigated by a standard numerical relaxation method
�8� and results are shown in Figs. 1 and 2. It is found that the
values of ��
 ,z�, in the case of E /Eth�1.0 �case �1��, re-
laxed to zero, whereas, in the case of E /Eth=1.01 �case �2��,
the azimuthal angle ��
 ,z� relaxed to small equilibrium
angle �eq�z�, and the values of �eq�z� vary slow between 0,
at the boundary of the cell, and 0.2 ��11.5° �, in the center of
the cell. The relaxation criterion �= 	���
R�−�eq� /�eq	 for
calculating procedure was chosen equal to 10−4, and the nu-
merical procedure was then carried out until a prescribed
accuracy was achieved.

It is important to stress that the balance between the elec-
tric, elastic and hydrodynamic torques exerted on the director
is reflected in the growth of the relaxation time

FIG. 1. �a� Plot of relaxation of the azimuthal angle ��
 ,z�
�
=K2t /�1d2 is a dimensionless time� to its equilibrium value
�eq�z� �solid line� in the twisted nematic cell, calculated using Eq.
�3�, with the planar boundary conditions �5�, at E /Eth=1.01. �b�
Same as �a�, but the angle ��
 ,z� is calculated using Eq. �3�, with
the value of E /Eth=0.99.

FIG. 2. Same as Fig. 1, but the angle ��
 ,z� is calculated using
Eq. �3�, with the boundary conditions �5�, at E /Eth=5.0 �a� and 7.0
�b�, respectively.
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R= ��1d2 /K2�tR, in case �2�, approximately four times larger
than in case �1�. With the increase of E /Eth up to 7, the value
of the relaxation time 
R is two order times smaller than at
E /Eth=1.01, and the azimuthal angle ��
 ,z� relaxed to equi-
librium angle �eq�z�, which, in turn, vary rapidly �within the
first 0.2 layer from the boundary� between 0 and � /2.

In the case of the boundary conditions

��z�z=0 = 0, ��z�z=1 =
�

2
, �7�

when the director on the upper plate is at right angles to the
director on the lower plate, both alignments being within the
plane of the plates, and the relaxation of the director to its
equilibrium orientation are shown in Fig. 3.

The relaxation processes in the vicinity of the electric
field E /Eth=1.01, for geometry with the boundary conditions
�7�, is much faster, approximately two order times, than for
the same relaxation processes with the boundary conditions
�5�.

It should be pointed out here that the dimensionless elec-
tric field E /Eth, for geometry with the boundary condition
�7�, was also scaled in Eth units.

Calculations also show that the effect of the external elec-
tric field E /Eth on the relaxation time 
R both for the bound-
ary conditions �5� and �7�, decreases as the magnitude of
E /Eth increases and saturates at E /Eth�6.0 �see Table I�.

The influence of the external electric field E on the relax-
ation time 
R of the director n̂ to its equilibrium orientation
in the twisted nematic cell, both for the planar alignment
with conditions �5� �case �1�� and �7� �case �2��, are shown in
Fig. 4.

Both these cases �1� and �2� are characterized by increas-
ing of the relaxation time 
R with decrease the electric field
E. Note that the second �2� relaxation regime is characterized
by much slower, approximately, two order times the relax-
ation time, than in the case of the first �1� relaxation regime.

B. Case of weak anchoring

Consider the same situation for the twisted nematic, but
now the director n̂ is weakly anchored to both boundary
plates and the anchoring energy takes the form �9�

Waz = Waz��s − �0� =
1

2
A sin2��s − �0� , �8�

where A is the anchoring strength, and �s and �0 are the
azimuthal angles corresponding to the director orientation on
the boundary plate and easy axis ê, respectively. The torques
transmitted to the surface are the elastic torque Telast
= �K2 /d�(���z� /�z)z=0,1 tends to align n̂s along E, and the
opposed anchoring torque Tanchor=−��W /��s� rotates n̂s to-
ward ê, and, at least, the surface viscous torque Tvis
=−�s���s /�t�. At the time scale t�
s=�sd / �K2−dA���,
where ��=�s−�0, one can neglect the effect of the surface
viscosity to the torque balance and the director angle has to
satisfy the boundary conditions

K2

d
„���z�/�z…z=0,1 = A�� . �9�

For the case of 4-n-octyl-4�-cyanobiphenyl, �8CB�, at T
=308 K, K2=5.84 pN �10�, and for narrow �or ultranarrow�
TLC cells d�2.0–2.5 �m. For the homogeneously �planar�
aligned LCs at an indium tin oxide �ITO� surface, the experi-
mental data for A, obtained using different experimental
techniques, are varied between 10−4 and 10−6 J /m2, so the
combination of Ad /K2 values varied between 0.43 and 43,
respectively. In the case of the small ��, for instance, ��
� �0.03,0.3�, the values of �Ad /K2��� are varied between
0.01 and 4.0. We note that the above �� is lower than 10°
�11�. The stationary solution of Eq. �4� with the boundary

TABLE I. The orientational relaxation times 
R calculated using
Eq. �3�, for the case of strong anchoring, both for the boundary
conditions �5� �case �1�� and �7� �case �2��, respectively.

E /Eth 0.99 1.01 1.05 1.1 2.0 3.0 4.0 5.0 6.0 7.0


R�1� 14 63 13 6.3 0.6 0.35 0.15 0.063 0.06 0.05


R�2� 0.8 0.75 0.71 0.6 0.3 0.18 0.1 0.08 0.06 0.05

FIG. 3. Same as Fig. 1, but the angle ��
 ,z� is calculated using
Eq. �3�, with the boundary conditions �7�, at E /Eth=5.0 �a� and
E /Eth=7.0 �b�, respectively.

FIG. 4. Influence of the external field E on the relaxation time

R. The relaxation time dependencies of the function E /Eth, with the
boundary conditions �5� �case �1�� �a� and �7� �case �2�� �b�,
respectively.
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conditions �9� have also been investigated by a standard nu-
merical relaxation method and results, for a number of E /Eth
values: 6.0 �curve �1��, 4.0 �curve �2��, 2.0 �curve �3��, and
�1.0 �curve �4��, and at the �Ad /K2���=0.1, are shown in
Fig. 5.

It is found that the values of ��
 ,z�, in the case of
E /Eth�1.0 �case �4�� relaxed to zero, whereas, in the case of
E /Eth�1.0 �cases �3�, �2�, and �1��, the azimuthal angle re-
laxed to equilibrium angle �eq�z�, and the values of �eq�z�
vary rapidly, with increase of E /Eth up to 6, within the first
0.13 layer from the boundary, between 0 and � /2. The re-
laxation of the director n̂ to its equilibrium orientation,
which described by the angle ��
 ,z� from the initial condi-
tion �see the lowest curves in Fig. 6� to �eq�z�, with the
boundary conditions �9�, at different values of �Ad /K2���
=0.01 and 0.1, and the value of E /Eth=3.0, have been inves-
tigated by a standard numerical relaxation method and re-
sults are shown in Fig. 6.

With the increase of �Ad /K2��� from 0.01 up to 0.1, the
value of the relaxation time 
R vary slow between 0.075 and
0.125, respectively. The relaxation of the director n̂ to its

equilibrium orientation, at different values of E /Eth=3.0 and
4.0, are shown in Fig. 7.

With the increase of E /Eth, at the same value of
�Ad /K2���=0.1, the value of the relaxation time 
R vary
slow between 0.075 and 0.06. The influence of the external
electric field E on the relaxation process of the director to its
equilibrium orientation in the twisted nematic cell, with
boundary conditions �9� is shown in Fig. 8�b�.

With the increase of E /Eth from �1.0 up to 4.0, the value
of the relaxation time 
R is order times smaller than at
E /Eth�1.0. The influence of the anchoring strength A on the
relaxation time 
R of the director to its equilibrium orienta-
tion in the twisted nematic cell, with the boundary conditions
�9�, is shown in Fig. 8�a�. The electric field �E /Eth=4.0� puts
the director into an equilibrium orientation with, practically,
the same relaxation times 
R, which decrease slow with in-
creasing anchoring strength: 0.075 for �Ad /K2���=0.01,
and 0.05 for �Ad /K2���=4.0, respectively. Having obtained
the function ��
 ,z�, one can determine the angular velocity
��
 ,z�=���
 ,z� /�
 of the director n̂ in the twisted nematic

FIG. 5. Plot of the stationary angle ��z� �z=z /d is a dimension-
less size� in the twisted nematic cell, calculated using Eq. �4�, with
the boundary conditions �9�, at the �Ad /K2���=0.1, and for a num-
ber of values of E /Eth=6.0 �curve �1��, 4.0 �curve �2��, 2.0 �curve
�3��, and 1.01 �curve �4��, respectively.

FIG. 6. �a� Same as Fig. 1, but the angle ��
 ,z� is calculated
using Eq. �3�, with the boundary conditions �9�, at E /Eth=3.0 and
�Ad /K2���=0.1. �b� Same as �a�, with the value of E /Eth=3.0 and
�Ad /K2���=0.01.

FIG. 7. �a� Same as Fig. 1, but the angle ��z ,
� is calculated
using Eq. �3�, with the boundary conditions �9�, at E /Eth=3.0 and
A��=0.1. �b� Same as �a�, but for E /Eth=4.0 and �Ad /K2���
=0.01.

FIG. 8. �a� Influence of the strength of anchoring energy
�Ad /K2��� on the relaxation time 
R, calculated using Eq. �3�, with
the boundary conditions �9�, at E /Eth=4.0. �b� Influence of the ex-
ternal field E on the relaxation time 
R, calculated using Eq. �3�,
with the boundary conditions �9�, at �Ad /K2���=0.1.

A. V. ZAKHAROV AND A. A. VAKULENKO PHYSICAL REVIEW E 72, 021712 �2005�

021712-4



cell. Calculations of the magnitude of ��
 ,z� shows that un-
der the external electric field E /Eth=2.5 �Fig. 9�, the angular
velocity of the director is characterized by increasing of
��
 ,z� up to 25�s−1� within the first half of the relaxation
term ��0.06�, and fast decreasing of ��
 ,z� up to zero,
within the second half of the relaxation term ��0.15�, re-
spectively. Note that the second half of the relaxation regime
is characterized by a complicate behavior of the ��
 ,z�. The
values of ��
 ,z� corresponding to the 
=
4 �see Fig. 9�b��
shows that the highest magnitude of the angular velocity
��
4 ,z� are realized, approximately, at the half distance be-
tween both boundaries and the center of the cell.

C. Case of traveling wave solution

We are interested now in the front propagation in systems
with the viscous dissipation, and governing by dynamic
Kolmogorov-Fisher equation �12,13�

�1
���t,z�

�t
= K2

�2��t,z�
�z2 + � sin 2��t,z� , �10�

where �=�0�aE2 /2.
Because, in the our case, the field E is aligned parallel to

the y direction, the state �z=0�z�=0 is now unstable, and front
��t ,z� starts to move away from the one edge �z=0� of the
cell to their second edge �z=1�. Its velocity v to be deter-
mined by the balance of the elastic, electric, and hydrody-
namic torques. The asymptotic velocity v is essentially de-
termined by a simple dynamical mechanism and ��t=0,z�
falls off exponentially with a decay length inversely propor-
tional to the field strength E. The front speed v is obtained by
substituting

��t,z� � exp
− E��0�a

K2
�z − vt�� , �11�

into linearized form of the Eq. �10�, and one sees that the
slowest velocity has a value

v = 2��0�aK2

�1
2 E , �12�

and a wave narrowest thickness � is inversely proportional to
the electric field strength E

� =� K2

�0�a

1

E
. �13�

Hence, if we have E��Eth, only then is the wave short
enough to fit in the cell length.

D. Temperature close to the TNA

As temperature is reduced towards TNA, growth of pre-
transitional SmA fluctuations are expected to give rise to a
novel torque T fl on n̂, which alters the Tvis. The physical
origin of T fl is due to the effect of shear flow on the fluctua-
tion domains. As a result, the effect of fluctuations, at lowest
order, is reflected in renormalization of �1 and K2 �14–16�

�̄1 = �1 + �1
c , �14�

and

K̄2 = K2 + K2
c , �15�

where �1
c = �kBT /4��� /�0����m /K1�t�−1. Here K1 is the splay

elastic deformation, �m is the mass density, �0 is the bare
correlation length, t= �T /TNA−1�, and �=�� is the associated
critical exponent. In our case the twist deformation K2

c can be
written in the form �14�

K2
c =

kBT

6

�

l2

��
2

��

=
kBT

6

�

l2

�0,�
2

�0,�
t−2��+�� . �16�

Here l is the layer spacing of the smectic layers, ��

=�0,�t
−�� and ��=�0,�t−�� are the longitudinal and transverse

correlation lengths, �0,� and �0,� are their background parts,
respectively. In the vicinity of TNA

lim
t→0

K̄2

�̄1

�
t−2��+��

t−1+��
� t1−2��.

In the case of 8CP the value of �� �0.67, ���0.55,
�0,��0.45 nm, and �0,��0.2 nm �4–6�, respectively, and

one have that the ratio limt→0�K̄2 / �̄1�→�. As a result, the
effect of fluctuations is reflected in the renormalization of �1

and K2 in Eq. �10� to �̄1 and K̄2, respectively. So, in the
vicinity of TNA, Eq. �10� takes the form

�2��t,z�
�z2 = 0. �17�

Together with the boundary conditions, �z=0,1�z�=0, one
has �=�s�TNA��0. Physically, this means that the align-
ment of the director n̂ is uniformly constant across the
sample as in the case of the strong anchoring without an
external field E. For temperatures close to the second-order
phase transition TNA, the boundary conditions �9� takes the
form

FIG. 9. �a� Plot of the angular velocity ��
 ,z� of the director
n̂�
 ,z� in the TN cell, calculated using Eq. �3�, with boundary con-
ditions �9�, at E /Eth=2.5 and �Ad /K2���=0.1, for number of times
�1� 
1=0.04, �2� 
2=0.05, and �3� 
3=0.06. �b� Same as �a�, but the
sequences of the times are �4� 
4=0.075, �5� 
5=0.09, and �6�

6=
R=0.15, respectively.
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 ���t,z�
�z

�
z=0,1

= 0, �18�

and Eq. �17� has a solution

��z� = �s�TNA� .

Physically, this means that the prescribed alignment of the
director n̂ is the same at both plates as well as in the center
of the cell. Our analysis also shows that in the vicinity of the
N–SmA phase transition temperature the role of the viscous
and elastic coefficients increases, due to the divergences to
infinity both the twist deformation and rotational viscosity
coefficients. This result is important because it shows that the
relaxation time tR increase to infinity when the temperature
T→TNA, e.g., at a few tens of mK from TNA in the nematic

phase, proportional to limt→0 tR=limt→0�K̄2 / �̄1d2�
R� t1−2��.
In the case of 8CB the value of ���0.55, and one have that

the ratio limt→0 tR=limt→0�K̄2 / �̄1�→�.
It should be mentioned that in the vicinity of the second-

order phase transition temperature TNA, the predicted veloc-
ity v=0. Indeed,

lim
t→0

v = lim
t→0


2��0�aK2

�1
2 E� → 0. �19�

So, in the vicinity of the second phase transition tempera-
ture, one deal with the stationary case, and the alignment of
the director n̂ is uniformly constant ��0 across the sample
as in the case of the strong anchoring in the presence only the
twist elastic deformation.

Probably, it can be fixed experimentally; first of all, let us
consider the case when T far from TNA, and the external
electric field is applied parallel to the axis y. In the case of
the strong anchoring, and the external field E�Eth, the align-
ment of the director inside the cell can be described by Eq.
�3� with the boundary conditions in the form �4�. When the
temperature T→TNA, e.g., at a few tens of mK from TNA in
the nematic phase, the director distortion in the gap between
two glass plates will maintain to be constant across the
sample, and the role of the electric field E becomes impor-
tant only at values of E increasing proportional to t−�, with
decreasing t �17�.

The torque transmitted to the surface Tsur= �K2 /��sin �s

tends to align n̂s along E, and an opposed anchoring torque
Tanch=−�W /��s rotates n̂s toward n̂0. Here �
= �1/E��K2 /�0�a is the electric field correlation length. The
balance of the torques applied on n̂s is

Tsur + Tanch =
K2

�
sin �s −

�W

��s

=
K2

�
sin �s −

A

2
sin 2��s − �0� = 0, �20�

where �s is the director orientation on the surface, whereas
�0 is the easy axis orientation. So, one has

A sin 2�� = 2�K2�0�aE sin �s, �21�

where ��=�s−�0.

When the temperature T→TNA, the azimuthal anchoring
energy also increase to infinity, proportional to t−��+��/2, with
decreasing t. Recently, the strong increase of azimuthal an-
choring coefficient A, using dynamic light scattering, has
been observed for 8CB at �307.0 K �18�. For the 1 �m cell
at T�307 K, the measured value of the azimuthal strength
anchoring energy for 8CB have been found to be
�7	10−6 J /m2 �18,19�. In order to apply Eq. �21� to our

calculation, we use the K̄2�8CB��8 pN �in the vicinity of
NA phase transition temperature �307 K �10,20��. The
thresholds voltage Uth=��K2 /�0�a is equal to be �0.9 V.
Experimentally �� is rather small, ���10° �11,21�, and
therefore sin 2���2��. Now there is the trigonometrical
equation for �s and one obtains

sin �s =
��A

�K2�0�aE
=

��A
�K2�0�a

d

U
.

Substituting these data into the last equation one obtains
sin �s�TNA��0.05. So, when the temperature T→TNA, e.g.,
at a few tens of mK from TNA in the nematic phase, the
director distortion in the gap between two glass plates, with
the boundary conditions �9�, will maintain to be constant
across the sample, with the angle limT→TNA

�s�TNA��0°.
The values of the strength azimuthal anchoring energy A as
the function of temperatures, calculated using Eq. �21�, are
presented in Fig. 10. Reasonable agreement is observed be-
tween the calculated values and experimental results, which
were obtained by dynamic scattering method �18�.

III. CONCLUSION

In this paper, we investigated the orientational relaxation
phenomena in the twisted nematic cell both for the cases of a
strong and weak anchoring orientations, the relaxation times
for these regimes of relaxation both in the vicinity of a
nematic–smectic-A second-order phase transition tempera-
ture and far from it. The relaxation of the director n̂ to its
equilibrium orientation n̂eq, in the twisted nematic cell under
the influence of an external electric field E, directed perpen-

FIG. 10. The temperature dependence of the azimuthal strength
of the anchoring energy A, calculated using Eq. �21�, and measured
values in Ref. �18� of A, respectively.
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dicular to a uniformly oriented NLC, is calculated using the
balance of the torques exerted on the director. The influence
of the electric, elastic, and viscous torques on the orienta-
tional dynamics of the director is reflected in the relaxation
of the director to its equilibrium position with the different
relaxation times. With a decrease of the electric field, the
magnitude of the relaxation time both for the cases of the
strong and weak anchoring is increased, and the value of the
relaxation time 
R, at E /Eth�1.0, in two order of magnitude
higher than one, at E /Eth�7.0. Notes that the value of the
azimuthal angle ��
 ,z�, in the case of E /Eth�1.0, relaxed to
small equilibrium angle �eq�z�, and the values of the later
angle vary slow between 0, at the boundary of the cell, and
�12°, in the center of the cell, whereas, in the case of
E /Eth�7.0, the azimuthal angle relaxed to equilibrium
�eq�z�, which, in turn, vary rapidly between 0 and � /2. It
should be pointed out that the electric field, in the case of the
weak anchoring, puts the director into an equilibrium orien-
tation, practically, with the same, as in the case of the strong
anchoring, relaxation time, and the magnitude of that time
decrease slow with increasing the anchoring strength. In
turn, the calculations of the angular velocity ��
 ,z� of the
director in the twisted nematic cell shows, that under the
action of the external electric field its magnitude is increase
up to some maximum, within the first shorter relaxation
term, and then, characterized by the fast decreasing of ��
 ,z�
to 0, within the second longer relaxation term. Note that the
second half of the relaxation regime is often characterized by
a complicate behavior of ��
 ,z�.

On the other hand, when the director rotates in the plane
parallel to both glass plates, the electric, elastic, and viscous
forces may excite the travelling wave spreading along the z
axis, and the front of ��
 ,z� starts to move away from the
one edge of the cell to their second edge. Its asymptotic
slowest velocity is proportional to the field strength E, and
decay length inversely proportional to E. Taking into account
that the thickness of the front propagation must be shorter
than the cell length, one has the condition for the strength of
the electric field which excites the front propagation. Hence,
if we have E��Eth, only than the wave short enough to fit
in the cell length.

Calculations of the relaxation processes, in the tempera-
ture range, close to TNA, e.g., at a few tens of mK from TNA
in the nematic phase, shows that the director distortion in the
gap between two glass plates will maintain to be constant
���TNA��0� across the sample both in the cases of the
strong and weak anchoring. It is similar to the case of the
strong anchoring, but in the presence only the twist elastic
deformation, at temperatures far from TNA. Note that the pre-
transitional anomalies in the behavior of the azimuthal
strength of the anchoring energy A should be expected at
temperatures less than log10�T /TNA−1��−4.0. We believe
that the present investigation can shed some light on the
problem of the strong increase of the azimuthal anchoring
energy strength in the vicinity of the nematic–smectic-A
second-order phase transition temperature.
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